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THEE YLIMITING LINE" IN MIXED SUBSONIC AND
SUPERSONIC FLOW OF COMPRESSIBLE FLUIDS

By Hsue-—sghen Tsien

It is well known that the vorticity for any fluld element
ig constant 1f the fluid is non—-viscous and the change of
state of the fluld is isentropic, When a solid body is placed
in a uniform stream, the flow far ahead of the body is irrota—
tional, Then if the flow is further assumed to be igentropiec,
the vorticity will be zero over the whole field of flow, In
other words, the flow is irrotational,  For such flow over a
solid body, it is shown by Theodorsen {(referconce 1) that the
solid body experiences no resistance, If the fluld has a
small viscosity, its effect will be limited in the boundary
layer over the so0lid body and the hody will have a drag duc
to the skin friction, This type of essentially lsentroplc ir-
rotatlonal flow is generally observed for & streamlined body
placed in a uniform stream, if the voloecity of the stream isg
kept below the so—cnlled "critlcal speed, !

At the critical speed or rather at a certain value of the
ratio of the velocity of the undisturbed flow and the corre-
sponding velocity of sound, shock waves appear, This phonome~
non is called the "compr0581bility burble,¥ Along a shock
wave, the change of statc of the fluild is no longer lisentropic,
althou gh still adiabatie, This results in an increase in en—

tropy of the fluid and generally introduces vorticity In an ™

originally irrotational flow, The increase in entropy of the
fluid is, of course, the consequence of changing part of the
mechanical energy into heat energy. In other words, the part
of fluid affected by the shock wave has a reduced mochsanical
enorgy, Therefore, with tho appearance of shock waves, the
wake of the streamline body is very much widened, and tho

drag increasos drastically. Furthermore, the accompanjing
change in the pressure distridbution over the body changes tae

aerodynanmic moment acting on it and in the case of an airfoilﬂ'

decreases the lift forae,
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All these consequences of the bresakdown of isentropiec
irrotational flow are generally undesirable in applied acro—
dynamics, Its occurrence should be delayed as much as possi-
ble by modifying the shape or contour of the body, However,
guch endeavor wlll be very much facillitated 1f the cause or
the criterion for the breakdown can be found figst,

CRITERION FOR THE BREAKDOWN OF
ISENTROPIC IRROTATIONAL FLOW

Taylor and Sharman (reference 2) calculated the succes— -
sive approximations to the flow around an airfoil by msang of
an electrolytic tank, They found that when the maximum veloc—
ity in the flow reaches the local veloacity of sound, the con—
vergence of the succesgsive steps seems to break down, This
fact led to the identification of critical speed or critical
Mach number with the, Mach number of the undisturbed flow for
which the local velocity et some point reaches the local vel-
ocity of sound, However, there is no mathematical proof for
tho coincidence of the critical Mach number so defined and
the breakdown of isentropic irrotational flow, Furthermore,
such a dofinition for critical Mach number implies that =a
transitlion from & veloclty less than that of sound, or sub-
sonic velocity, %0 a velocity greater than that of sound, or
supersonic veloeity, does not occur in isentropic irrotational
flow, On the other hand, Taylor (reference 3) and others
found solutions for which such a transition oceurs, Further—
more, Binnie and Hooker (reference 4) have shown that at
least for the case of spiral flow the method of successive
approximetion is & convorgent one even for supefsonic vel—
ocitlies, With these facts in mnind, 1% may be concluded that
the identification of critical speed with local supersonic
velocity cannot be correct, '

Taylorls investigation on the spiral flow (refercnce 3)
indicates that there is & line in the flow field where the’
maximum velocity 1s reached and beyond which the flow cannot
continue, Tollmien -in a subsequent paper (referemce 5) called
such lines limiting lines, The velocity at the limiting Iine
is never subsonic, However, the true characteristics of such
limiting lines and their significance were not investigated
by Tollmion at that time, Recenily Ringleb (reference 6) ob—
talned another particular solution of lsentropic irrotational
flow in which the mazimum veloclty reached is approximately
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twice the local sound velocity, ©For this flow also a limit-—
ing line appeared beyond which the flow cannot continue,
Furthermore, he found the singular character of the limiting
line, that 1s, infinite acceleratlion and infinite pressure
gradient, YVon Karman (reference 7, particularly pp. 351356 )
demongtrated this fact for the general two-dimensional flow,
He also suggested that the limiting line is the envelope of
the Mach waves (fig, 1) and thus can occur only in a super—
sonic reglon, He also took its appearancés as the criterion
for breakdown of isentropic irrotational flow, This general
two-dimengional theory was established later By both Ringled
(reference 8) and Tollmien (reference 9), Tollmien coérrected
some mistakes in Ringlobl's paper and, in addition, showed
that the flow definitely cannot continune beyond the limiting
line, The later fact introduced a "forhidden reglon! in the
flow bounded by the limiting line, fThis physiecal abdbsurdity
can be avoided only by relaxing the condition of irrotation-
ality, But, as stated previously, for non—-viscous fluids

the tvansition from a flow without vorticity %o thet with
vorticity can be accomplished only by shock waves,; which at
the same time also cause an increase in the entropy,

However, before it can be concluded that the appearance
of a limiting line, or the envelope of Mach waves, 1is the
general condition for breakdown of isentropic irrotational
flow, it must be proved that the singular behavior of Iimit—
ing llnes is general and not limited to two—dimensional flow,
This is the purpose of the present peper, First the proporty
of 1limiting line in axially symmetriec flow will be investigabted
in detail, Then the goneral three-dimensional problem will be
sketched‘ These investigations confirm the results of Ringleb,
Von Karman, and Tollmien for these more goneral cases,

Therofore, by considering only the gteady flow of non—
vigeous fluids, the criterion for breakdown of isentropic
irrotational flow is the asppearance of & limiting line, For
the actual motion of a solid body, however, the flow is neither
steady nor non—viscous, Small disturbances always occur and
almogt all real fluids have appreciable viscosity, The small
disturbances in the flow introduce the question of stabllity,
In other words, the solution found for isentropic irrotational
flow may be unstable even before the appeasrance of the limit—
ing line, and tends to transform itself into a rotational flow
lnvolving shock waves at the slightest disturbance, If this
is the cace, the criterion concerns not the 1imiting line, but
the stabi¢ity limit, This prdblem has yet to bs solved,
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The effect o0f viscosity will be limited to the boundary
layer 1f the pressurs along the surface in the flow dilrection
never incroases to0 rapildly, Then outside the boundary layer
the flow is isentropic and irrotational, If the gradlent of
pressure is 00 large, the boundary leyer will separate from
the surface, However, at low velocitles such separatlion only
widens the wake of the body and changes the pressure distri-
bution over the body, 3But if the boundary layer separates
at a point where the velocity outside the boundary layer is
supersonic, addltional effects may appear, The flow outside
the boundary layer in this case can be regarded approximately
ag that of a so0lid body not of the origlnal coantour but of a
new contour including the "dead wabter! region created by the
separation, It 1s then immediately clear that the ldeal
lsentropic irrotational flow around this new contour may have
e limiting line, Hencé, the actual flow then must involve
shock waves, In other words, the separction of the boundary
layer in the supersonice region may induce a shock wavse and
thus extend its influence far beyond the region of separation,
Furthermors, the steep adverse pressure grafisnt across a
shock wave may accentuats the separation, This interaction ™
betweon the separatlon and the shock wave is freguently ob—
served in experimonts, :

The above considerations indicate the possibility of
the breakdown of lgentropic irrotational flow outside the
boundary layer even before the appearance of the limiting
line, Therefore, the Mach number of the undisturbed flow
at which the limiting line appears may be called the Pupper
critical Mach number,” On the other hand, since shock waves
can occur only in supersonic flow, the Mach numbor of the un-—
digturbed flow at which the local velocity reachos the veloc—
ity of sound may be called the "lower critical Mach number,"
The actual critical Mach number for the appearance of shoeck
waves and the compressibility burdble must lie between these
two limits, By carefully designing the contour of the body
to avold the crowding together of Mach waves to form an onve—
lope and %o eliminate adverde pressure gradients along the
surface of the body, the compressibility burble can be delayed

AXIALLY SYMMETRIC FLOW

The solution of the oxact differential eguations for an
exially symmetrlic isentropic irrotational flow was first given
by Frankle (reference 10), The method was developed independ-

i
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ently by Ferrari (reference 1l), Their method applies par—

. ticularly to the case of supersonlc flow o¥er & body of

revolution with polnted nose, In this case, the flow at
the nose can be approximated by the well—known golution
for a cone, From thls solution, the differential equation
1s solved step by step, using the net of characteristics
which are real for supersonlc velocities, In the following
investigatlion, the chief concern 1s not the solution of the
partial difforential equation but rather the occurrence and

the properties of the limiting line in an igentropic irrota—

tional flow, The general plan of attack is that of Tollmien
(reference 9). However, here the calculation 1ls based on
the lLegendre transformation of wvelocity potential ingtead of
the stream function,

If q 1is the magnitude of the velocity, & +the corre-
sponding veloeclty of sound assuming an isentropic process,
p the pressure, and p +the density of fluid, the Bernoulll
equation gives

1
P . (1 v-1 ¢® N7 (1 L Y1 == (
Po 2 8,°® z af 1)
y-1 g~ v—1 2N T
N L At F o
g2 2 z = <§ 2 a2 (2)
X
g N1 qa Y2 Y—1 of -;:;
Po o 2 a

In these equations, the subscript o denotes quantities
corrcsponding to g= 0, =and ¥ 1s the ratio of specific
heats of thoe fluld, Let the axis of symmetry be the x-axisg,

" the distance normal %0 x-axXis be denoted by ¥, =&and the

veloclilty components. along these two directions be denoted
by uw and v, vrespectively (fig, 2), The x-y planse is,
thercfore, a meridian plane, Then the kinematical relations
of the flow are glven by the vorticity equation

Vx — uy = o* ’ (4)
partlal derivatives are dendted

by subseripts, Thus v, = év uy = %?

¥*Throughout this paper

EEES
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and the continuity equation . . N
i(y.&.u +_§_<y-9_v>=0 (5)
ox Po oy Po

Equations (1) to (5), together with the relation ¢°=u®+v?,

epecify the flow completely,

To simplify the problem, a-velocity potential ¢ defined
ag follows 1s introducedt

uw = ©xs v = (py . (6)
' ¢

Then equation (4) is identically satisfied and equation (5),
together with equations (1) and (2), gives the equation’ for ¢,

2 2
u uy v v
< az> Pxx a? xy < az’) vy 77 T ,(7,) .

The characteristiecs of this differential equation, to be
called the characterilstics in the physlecal plane, are given
by g (x, ¥) = 0, where g (x, y) is detcrmined by the
following equation i

-4 2
u 2 uv v 2
<1'-';-s>gx—2;-a'sx€y+<1";s>€y =0 (8)

It can be easily seen from this equation that g 1s real
only when q > a, Therefore, the characteristics are resal
only in supersonlc regions of the flow,

The meaning of characteristics in the physical plane is
lmmedigtely clear if one calculates the relation between the
slope of a characteristic and the slope of & stream line in
the merldian or x-y plane, By the definition of the function
g(z,y), the value of g is zero, or constant, along a char-
acteristic, Therefore, by writing a quantity evaluated at =
certalin constant value of a paramster with that parameter as
& subscript, the slope of tho characteristic in the physical
plane ig : '
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( “E‘? (9)

Along o streamline, the stream function YV defined by
following cquations ig constant:

Wy-y-s—u, Wx” v v (10)
) o
Therofore, the slope of a streamline is
(9.2 =5 (11)
ax /Ay u
Equations (8), (9), and (11) give
/a

@, BB o (@), e}

where f 1s the Mach angle glven by B=sin > %. Therefore,
equation (12) shows that the characteristics in the physical
plane are inclined to the streamlines by an angle equal to
the Mach engle, Such lines are ths wave fronts of infilnites-
imal disturbances and arc called Mach waves, In other words,
characteristics in physical planes are the Mach waves in

that plane, There are two famllies of Mach waves inclined
symmetrically with respect to each streamlins,

If to each pailr of values of w and v, there is Qne
pair of values of . x, y, then x and y can be considered
as functions of wu, v, In other words, instead of taking
x and y as independent variables u, v can be used as in-
dependent verlables, The plane with u and v as coordinates
1s called the "hodograph plane," An equation in the hodograph
plane corresponding to equation (7) can be obtained by means
of Legendret's transformation, By writiag
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X = ux + vy — o (13)

it is scen thet

X. = X, X =¥ . (14)

Then cquation (7) can be written as

CyE 4y
(-, w2 s

a uv

2

v v s
— o — = 0 15
¥ ( a2 *uu X [qu vy Xuv] (15)

The characteristics of equation (15) are given by £(u,v)=
where f 1g the solution of the following differential equa-

tion
2 uy ¥
-2 gnd s (E-Tu)ns
C-2 e nd e
+ - — =
(1 5) Y5 Xy £y o (16)
v .

Bquation (16) shows that the characteristics in the hodograph
plane depend upon the values of the derivatives of ¥ which
must be obtained from equation (15), 1In other worde, the
characteristics in the hodograph plane change with the flow
and arec not o constant set of ecurves as are those in two—
dimensgional problems,

To obtain the relation between the characteristics ia

the physical plane and those in the hodograph plane it 1is
noticed that equation (9) can be rewritten as

(d.:r)g : (tix)g =~ g, %8 - (1)
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Then equation (8) is equivalent to

(1—-32) (dy')g +2—-— (dy) (dx) +(1—--> (ax ) =0 (18)

However, in general, equation (14) gives the following
relation between the differentlals of X and y and those
of u and v .

~

dx = qu du + Xuv dv

; (18)
= Xuv du + XVV dv
By means of these relations, equation (18) can be transformed
into an guation for (du) and (dv) This transformed

equation can be simplified by using equation (15). The final
relation is

(qu Xy xuv2)[{<l - ——) qu (du)gz

- 2 <_.:§...;‘Y_ uv) (dué (dv) +{<1-—-——-)+——- Xov (d.v) ]

(20)

Therefore, if the first factor of equation (20) is not zero,
the variations (du)g and (dv)g along a characteristic in

physical plane must satisfy the relation
2
l--—~—~ (du -2 JB ¥ du dv
{( ) Xv Xug )g {aa Xy Xuy ( )g ¢ >€

EER 2
((} )+ = ij(dv)g = 0 (21)
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This is the same rslation for the variations (du)s and
(dv), along a characteristic in the hodograph plane as can
be seen from equation (16) and the following relation ob—
tained from the definition of £

(dv)f : (du)f = — £ 3 f (229

The transformed characteristics of the physical plane and

the characteristics of the hodograph plane themselves satlsfy
then the same firet order differential equation, Therefore,
these two types of curves are the same, In other words, the
characteristlecs of the hodograph plane are the. representation
of Mach waves in the u-v plaie,

THE LIMITING LINE
Equation (20) shows that if

Xuu Xvvy = Xuv8 =0 (22)

then tne transformed differsential equation for the character—
istics of the physical pleane, or Mach waves, is satisfiled,
Thorefore, if there ls a line in the hodograph plane along
which the vealues of the derivatives of % are such that
equation (23) is true, then this line when transferred %o
the physical plane will have 1ts slope equel to that of one
famnily of Mach waves, Such lines are called the 1imiI%ting
hodograph in wu—~v plane and the limiting line in physical
plane, Since Mach waves occcur only in the supersonic regions
1% 1s then evident that the 1limiting line must appeaT in
these regions, The significance of the adjective "limitingh
will be mads clear as other properties of such lines arse
investigated,

Now the question arises: Can the limiting hodograph
be a characteristic in wuw-v plane? Along a limiting hodo—
graph, equation (23) gives

€§g> = _ Xuun Xyv T 2 Xyvy quv_+ Xgu Xuvy

(24)
b} Xuuvr Xvv — 2 Xuv Xuvv + Xgu Xvvy
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where the subseript 1 denotes the value along a limiting
hodograph, Now the general differential equation for X,
equation (15), is true for the whole wu— v planej ther o
fore; the equation is still true by differentiating it with
respect to u and v, The results can ve simplified by
using equation (15) itself and equation (23), Then at the

iimiting hodograph,

-] a
O W V) X+ 8 | BT Y. X Xpggor + (1-..11._>
[( aa) X vv] nuu [aa X uv wuv B

v

<

v
1IN Zox %+ [BT.T x 1.2
< "az> %g ¥V | Tuuv a® Xy Xyvy + as

s xuu] Xopr= (1=1) L Xgpm 2 L Xyg+ (Y41) T Xuy  (25D)
a a a”

b

+ %L qu] Xuvy = (¥+1) i% Xygg— 2 i% Xyv+ (¥=1) i% Xuv (25a)

Equations (24), (25a), and (25b) are the only avzilable
equations involving no higher derivative than the third, On
the other hand, the slope of & characteristic in the hodo-
graph plane can be calculatsd by equation (22),

dv £
(a';) s - =2 (26)
£ v

This equation together with squation (16) gives

(6-5)r & %y 60,
- 2 :v - == Xuv} G ) {<l~~>+ Xq quj o (z7)

Thercfore, 1f the limiting hodogreph is a characteristic, then

%3> must satisfy oquation (27), However, a simple calcula-
u
1 .

m
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tion shows that it is not even posgsible to obtgin a relation

between %X and other quantities not involving the third-
/s
order derivatives of X, Hence, (él does not satisfy

equation (27), In other words, the limiting hodograph is

not a characterlstic, Transferred to the physical plane,

this means that the limiting line is not a Mach wave, But

ag shown in previous paragraphs, the limiting line Is evVery=
where tangent to one famlly of Mach waves, OConsequently, the
limiting line must be the exvelope of a famlly of Mach waves,
Thig property of the limiting line can be taken as 1its physical
definition,

LIMITING HODOGRAPH AND THEE STREAMLINES

At the limiting hodograph both equations (15) and (23)
hold, By eliminating one of the second—order derivatives,
84y X the followlng relation is obtalned ' T

(Xyv )y (Xuv)y (28)

The sign before the radical in equation (28) can be either
positive or negative, but not both, This relation will be
used prescntly to show that the streamlines and one family
of characteristlcs are tangent in the u-v plane,

From equation (10), the differential of the stream
function can be calculated es

W =eey vax+y L w dy (29)
Po Po
In this equatlon, y can be replaced by X 'aCGording to

equation (14) and the differentials dx and . dy replaced

;i the differential 4du and dv according to equation (19),
en : e 4
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av = Xv gL [(ﬁ VXgg 0 Xu;> du4-<f V Xpyyt o xv€>dv] (30)

Q -
Along a streamlino, dV = O3 thereforo the slope of tho stream—
line in the hodograph plane is given by

dwy v Xav ¥ 2 Xyy

At the limiting hodograph, equation (23) holds; therefors,
equation (3L) together with equation (28) gives

113

X 1 -
-i\:) - _<...._I‘1 - L (32)
4 Xvw/y &Y /A

ae
where the sign before the radical ecan be either negative or
positive corresponding %o the sign in equation (28),

On the other hand, the slope of the characteristics in
the hodograph plane 1s determined by equation (27). By

solving for %%>f and simplifying the result with tho

aid of equation (15),

3
uv v q° -
. — - + [ —
EX) = B X Yuv ;rgz (33)
du/¢ v@ v
(-3)*

The sign before the radical is either positive or negative
corresponding to the two familieg of characteristics, By
using the positive sign in conjunction with the positive sign
in equation (28), and similarly for the negative sign,

s
dv 1 -
Wew W /97 '

St --—»-—l
ae + ae
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Equations (32) and (34) show that the streamlines and one
family of characterigtics are tangent to each other at the
limiting hodograph, This result is the same as that ob—
tained for two—dimensional flow, (See references 7, 8, and
9.,) Those cquations when compared with equation (12) for
the slopc of Mach waves in the physical plane ylelds the
intercsting result that the streamlines and one famlily of
charactcristics at the limiting hodograph are perpendicular
to the corresponding Mach waves at the llmiting line,

Since =
‘1] .
du w \Uv

Equation (22) gives the following equation which holds at
the limiting hodograph

. . &
<1-——§—:-) (\lxu)13+ 2 —‘i—} (Vy) 4 (\lfv)1+(1-l;-z) (\!fv>12= 0 (36)

This equation can be reduced t0 more familiar form by Iintro—
duclng the polar coordinates in the wuw—v plane:

u = ¢ cos g, v = g sin 8

where 8 ig the angle between ithe velocity vector and wu—-axis,
Then equation {38) takes the form

(\lfq)t2 + (—5—5 - ;%—) (bg)," = 0 (37)

This can be regarded as the equivalent of equation (23) for
defining the limiting hodograph, 4 similar relation exists
for two—dimensional flow, (See references 7, 8, and 9,)

Along a streamline, the ratio between (dv)w and

(du) is givon by equation (31), By substituting this
ratio in ocgquation (19), the differential (dx)w and

(dy)y elong a streamline is given as . : o
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. )
Lt %o ™ M
(ax)y = uu__vy uv Caudy
. =T X T R Xy
: . > (38?
v [qu Xov = Xuv J
(aydy = (du)y
=V Xgy TR Xgy ~

At the limiting line, equation (23) is satisfied, Then equa—
tion (38) shows that at the limiting line, the streamline has
a singularity, Or, more plainly, ?dx)w and (dy)w at thess

points are infinitesimals of higher order than (du)y and
(dv)ye 3By writing s for the distance measured along a

streamline, equation (38) gives immediately

X, X
-V gy PR ey
(us)w = (39)
- X 2
¢ [qu Xev uv ]
Similarly,
v’X. -—uX
. _ au uv
(Vs)w = - (40)

r 2
aq Lx X - X J
ua v uv

Therefore, at the limiting line, the acceleration along a
streamline is infiniltely large, Furthermore, since the
pressure gradient (p5>W along a streamline 1is

(pg)

the pressure gradient at the limlting line is also infinitely
largs, ) . .
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Such infinite acceleration and pressure gradient lead
one t0 suspect that the fluid ig thrown baeck at the limiting
line, In othor words, the streamlines are doubled back at
this linc of singularity, @To investigate whether this is
true, tho character of the relatlon X,, Xgy = Xyg® =

along a streamlins has to be determined, If the derivative
of thils oxpression along a streamline is not zmero, then

Xuu Xvv — vg has only a sinple zero at the intersecbion

of the limiting line and the streamline, Oonsequently, the
differentials (dx) and (dY)W will change sign by passing

through the limiting hodograph in u-v plane along a stream—
line, Hence, the streamlines will double back and form a
cusp at the limiting line, The derivative of ¥, X¢v —Xuva

along the streamline can be calculated wlith the aid of eque-
tion (30)

a o ' 2 -
[-é_—'a (xuu XV‘V' - x‘ll'v‘ )]t - quu XVV -2 x’uv quv + X"J.‘ll Xuvv

v X —Tl
+ ua

Xy
{xuuv Yov ™ 2 Xuy Xuve T Xgy xvvv} (42)
vy

—_v X $u.X
uv

The exprossion on the right of equation (42) cannot be reduced
to zero by the available relatlons, which consist of eguation
{23), equation (15), and differentiated forms of equation (15).
Thererfore, the exp;ession concerned generally has only a simple
zero at the limiting hodograph and the stroamlines are doudbled
back at the 1limiting line, It will be shown later that there
is no golution possible beyond the limiting line, Hence, the
name limiting line,

ENVELCPE OF CHARACTERISTICS IN HODOGRAPH PLANE AND

LINES OF CONSTANT VBLOCITY IN PHYSICAL PLANE

Sinco the limiting line 1s the envelope of the Mach waves
in the physical plane, it 1s interesting to see whether there
is also an envelope for the charactoerlstics in the hodograph
plane, The characteristics in the u—v plane are 8stermined
by equation (36), The envelope to them can be Ffound by olim-

inating <%%>é between cquation (28) and the following oquation
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{é"%)*ixw} ('E}E)i,"{g“% Xuv}=° (43)

which 1s obtained by equating to zero the partiasl derivative
of equation (26) with respect to (%E)f, The result can be
simplified by equation (15), and then it bocomes simply

1 u24;v2 . uzzz - uﬁ:% (44)
a a 8
Thig 1is szsatigfled by either
a=.0 . (45)
or
vt o+ w2 = 8® (46)

The first condition, equation (45), when substituted into
equation (26) gives

(47)

4l

.‘.1.Y.> =
du f,a=o0

which shows that the circle of maximum velocity correspond—
ing to a = O, 1s the onvelope of the characteristies in hodo~
graph plane, The second condition, oquation (46), is the
spurious solution, sinco generally the characteristic at

g=a is not a tangent to the circle q = u, Hence a = 0

is the only envelopse, i -

The lines of constant velocity in the hodograph plane
are simply cirecles, Therefore -

&v) = u ’
(-a; - - (48)
q , v i

By means of thls relation and equation (19), the slope of the
lines of constant velocity is given as

<EZ - TV Xgy B Xy (49)
dx/ q

T Xgu — B Xy

[N
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This equation together with equation (30) gives the following
interesting relation

In other words, a line of constant veloclty in the physicel
plane 1s perpendicular to the streamline in the hodograph
plane at the corresponding points,

(5.0)

du)w

THE LOST SOLUTION

Throughout the previous calculation, the possibility of
using the Legendro transformation is assumed, This requires
that for cach pair of values of u, v there is one and
only onc pair of values of x, y, However, it is not al—
ways tyuo, It lg possible to have a number of polnts in
the physical plene having the same value of u and v, If
this is the case, then evidently 1t is impossible to solve
for x and y from the pair of functions u=u (x,y),

v =0 (x,y). Mathematically, the situation is expressed by
saying that the Jacobian d(u,v)/3(x, y) vanishes in the
physical plane, Or

Uy Ty — Uy Vy = O (51)

However, this 1s also the conditlon for a functional relation
between u and v3 for exampls, v can be exXpressed as a
function of wu, In other words, u and v are not independ—
ent, Hence if a solution is "lost" or not included in the
family of solutions allowing Legendre transformation, then for
that solution,

v = v{u) ~ (B2)
It is seen that equation (51) is then identically statisfled,

By eliminating p £from the continuity equation, there
is obtained

-] =1
u uv v v
1.._.__)11 ......-(uy+v)+(1—-,-->v+—-=0(53
( a2 x a® ® a® ¥ y )
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This equation can be rewritten in the following form by using
equation (52)

-2)- 28 (G- D E-2)urio 0 o

The vorticity equation, equation (4),can be expressed as

LLgH u_ = 0 | (55)

du ¥

From equations (54) and (55), it is possible to solve for
u and Uge The resgult is

x
r( = 2 a
[(-2)- e apar, (s x2y (& ]u . (56
L a® a® du a® du * 4 )
a B\ sdv\2 d
(1..._._. - 2 oV av + (1-.2-) (.;Z) Uy =~ R (551))
a® du a®/ \u ¥ du

By differentiating the first of equation (56) with respect
to y, the second with respoct to =x, +the following recla-
tion iy obtained by subtractions

2
Ly u_ o+ L= 0 (57)

au® ¥ 7

Therefore .
_Q'.Z = —-—-——-—_——_f(Y) - X (Ra)
du ¥y

or

iy
du

whero f(y) is an undetcermined function of y, However,
equation (55) shows that for lines of constant values of’ u

where du = uy (dx)u + uy (dy) o,
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(%Z) B ot = constant (59)
. v

Hence, lincs of constant values of u and v are straight
lines, This restriction reduces the function f£(y) in

equation (58) to = numerical constant, Pub f(y)- s, 2qua—
tion (58) is then
K - x
Yy o= ~iz , (50)
du e —— .

Therefore lines of constant vaelue of uw and v are radial
lines passing through thse polnt =x = X, Thus the lo0st solu—
tion is nothing but the well-known solution for the flow
over a nconlcal surface,

From equation (59), 1t i1s seen that lines of constant
velocity are perpendicular to the teangent of the u—v cuyxve
at the corresponding points, 3By substituting the value of
1
7 from oquation (57) into equation (56a), a relation between

v and v 1ig obtaineds

a
vy & 3X_ (1 - ><a ) +g 2T &Y (1—-——) (61)
au® a® a®
This is the differential equation for determining the hodograph
representing the flow over a cone, Flgure 3 shows the hodograph

for a cone of 30° semivertex angle and with a velocity at thé
surface of cone equal %o 0,35 ¢, The maximum velocity is ¢ -~
that 1s, the valus of g corresponding to a = 0, TFigure 3

is drawn from data given by Taylor and Maccoll (referencs 12).

I% may well be mentloned here that the lost soélution for
the axially symmetric flow 1s not limited to supersonic veloc—
ity as 1s the gase for two—-dimensional flow, In fact, Taylor
and Maccoll show that for small forward veloclity of the conse,
gupersonic velocities occur only Just after the heed shock
wave, The velocity decreamses as the surfacc of the cone is
approached, TFinally, 1t bescomes subsonic for points near the
surface of the cone, Plgure 4 shows a few examples taken from
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their calculations (reference 12), The dotted curves in the
figure are the Mach waves, The dotted straight lines are

the boundaries beiween the supersonic and the subsonic regions,
Purthermore, spark photographs of a conlcal shell in actual
flight taken by Maccoll (reference 13) &0 not indicate the
presence of “shock waves in reglons of flow where such transi-
tion from supersonic to subsonic velocities is expected, =~
Thereforsc, at least for this particular type of fiow, =

smooth transition through sonic wvelocity actually takea

placao,

CONTINUATION OF SOLUTION BEYOND THE LIMITING LINE

Since it 1s shown in a previous paragraph that the
strocamlines are generally turned back at the limiting line,
the question arlsest I 1t possible to continue the solution
beyond the limlting line? Of course, there are two ways of
continuing the solutiont The new golution 1ls Jjoined either
smoothly to the given solution at the 1limiting Ilne or with
a discontinuity, As shown before, the limiting line is the
envolope of one family of the Mach waves, Then at every
point of this line its direction differs from that of The
streamlinc by an angle equal to the Mach angle, 3But the
Mach angle 1s not zero except at points where the velocity
of fluid has reached the maximum velocity and the ratio
% = 0, Therefore, the limiting line generally does not
coincide with the streamline, and the discontinuity at the
Junction of the solution at the limiting line cannot be that
of a vortex sheet, The only other type of discontinuity is
the shock wave, However, the anglc between the limlting line
and the flow dlrection is .equal to the Mach angle, Then ac—
cording to the result of the theory of shock waves, the dis-—
continuity across such a line vanishes, In other words, o
there cannot be a discontinuity a%t the limiting line, There—
fore, it is impossible to join a new solution a% the limit—
ing line with a discontinuity,

As to the second possibllisy of Jjoining a new solution
smoothly at the limiting line, it 1s scen that the flow beyond
the limiting line must be irrotational and isentropic since
the limiting line cannot be a shock wave, There are only two
types of isentropic irrotational flow; namely, one that allows
the Legendre transformation, and one that does not, the "lost
solution, " Investigate the second alternative first, If the
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solution heyond the limlting line belongs to the so-called
lost solution, then since the Jjunction at the limlting line
must be smooth, the values of wu and v at the limiting
line must also satisfy egquation (81), But the slope

(%1> at the limiting line is given by equation (24), The
u/y

=2 .
second derivative <%-%>1 willl then involve the fourth
u .

order derivatives of X, Besides these expressions, the
available relations are equationg (15), (23), (25a), (25d),
and three morc equations obtained by differentiating equations
(25) with respoct to wu and v, However, it is still impos—

sible for (%%)1 to satisfy an equation like equation (61)

where no derivative of X appesars, Hence, the limiting
hodograph does not satlsfy the equation for the lost solu-
tion, In other words, the lost solution cannot be used %o
continue the flow beyond the limiting line,

The only remaining possibility is to continue the flow
smocthly by another solution obtainable dy a legendre trans—
formation, OSmooth continuatlion means that the values of wu,
v, and p must be the same at the Jjunction, the limiting
line, Since shock waves do not appear, lsentroplc relations
still hold, The density p is determined by veloclity only,
The value of u and v are determined by the coordinates
in the hodograph plans, The position of the limiting line
in the physical plane 1s determined by Xy, X ye Therefore,

the problem can be stated as follows: At & certain given
curve u(A), v(A) in the hodograph plane, the limiting
hodograph, the values of ¥,, Xy &are given; A 1is the

paramseter along the given curve, It is requiref to deter—
mine a new solution of the differential equation (equation
(15)) with these initial values, First of all, it is seen
that with the glven data, the left—hand sldes of the follow-
ing equations are given:

a . du dv
an u? uu gy uv oy (62 )
d , du dv
o e = Xyp T Kee (62b)
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Thereforec
T dv a du .
Z | - —— + o — 634
Xy = Xov Y o Xv)] I (63a)

- a { a
dv) av 4 ( du 4 ].(du)
= —t—r — — ——— X Fo ot - (X e
Xogs _<dx Xy - PIPTY ") // ™ (63D)

By substituting those values into equation (15), the second—
degree terms reduce to -

. ’ a
2 dv 4 du 4 du
Xau Xov Xav [dx an v a) dx u v N

a a u\2
+ [_._ (Xv)} é—) (84)
an A
which is linear in ¥, y. Therefore Xgyy can be uniguely

determined by equation (15), In other words, with the given
data, the second order derivatives of X at the given curve
u(r), v(Xx) can be determined uniquely, in spite of the fact
that the differentinl equation (15) is of second degres,
Friedrichs and Lewy (refercnce 13) have shown that under
these clrcumstances, the function X within a region R
(fig, 5) bounded by two characteristics and the given curve
s uniquely determined except for an additional constant,
Consequently there can be only one solution corresponding to
the given data at the limiting hodograph, However, this solu-
tlon is the very one which gives the reverse flow at limiting
line, Therefore, it is impossible to continue the solution
beyond the limiting line evea by a Legendré transformation,

Since all thres alternatives fail to offer a way of con—
tinuing the solution, the limiting line ie truly an impossible
boundary to cross, In other words, the region bsyond the
limiting line is & forbidden region, This physical absuriity
can be resolved only by the breakdown of igsentropic irrota~
tional flow,
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GENRRAL THREBE-DIMENSIONAL FLOW '

The methods used in previous sections for investigating
the axially symmetric flow can be easlly extended to the
general three—~dimensional case, 1In the present section, this
investigation will be sketched dbriefly and the results indi—
cated,

Let - the three components of veloclity elong the thres
coordinate axes x, V¥, and 2z ©Dbe denoted Dy u, v, and
w, respectively, Then by introducing a velocity potential
¢ defined by i

U= @y, A 2 =9, . (es)

the differential equation for ¢ of an isentroplc irrotational

flow can be wribten as (reference %) .

(mxx * Cyy + ¢zz) =

2 2 B \
VWPt T Pt W,k BVNG o+ 2V, + 2UTE L (886)

If, for every triad of w, v, w, %there is only one triad

of x, y, 2, then the Legendre transformation can be
used, Thus

X = UX + VY + WZ - (67)
and

X = I. Xv= Y, xwu 2 (68)

The differential equation for ¢, equation (66), is then
transformed into )

2> [BG—B’Z+ CA— G° + AB- H2}= w® (30— F%) + v° (04— &®)
. ' : (69)
(4B— H™) + 2vw (GE-— AF) + 2wu (HF— BG) + 2uv (FG—CH)
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where the following notations are used

LA=X B=X C=% F=X G=X H =X (70)

au!? vy?! ww' vw' wu' v

By analogy with the &xlally symmetric case, the llmit—
ing hodograph surface 1g defined as the surface in the u,
v, w space, or hoddgraph space, where the following rela-
tion holdsi

(71)

@ M| e
H oW
tx)

"

o]

The properties of this limlting hodograph and the corregpond-
ing limiting surface can be found by considering the behavior
of gstreamlines and characteristics at such surfaces,

From equation (68) the differentials of x, y, and =z
can be written as

dx = A du + H dv + G dw , (72a)
dy = Hdu + B dv + T dw (721)
dz = G du + F dv + C dw (72¢)

Along a streamline, the differentials dx, dy, and dz must
be proportional $t0o wu, v, end w, respsctively, Thus the
equatlion of a streamline in physical space is

(ax),  (ay), (az)
¥ o v o Y
u v W (?3)

where the subseript WV indicates values taken along the _
streemline, The equation of & streemline in hodograph space
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ijg obtained by eliminating d4dx, 4y and dz from equatlon

v (73) by equation (72), The result s
(du) (av) (aw)
* g _\ll = \U = \l’ (74:)
au + Ov + gw Tu + By + fw  Bu + FV + cw

-—

where a is the_co—factor of A in the determinant A of
equation (71), b +the co-factor of B, and so forth, Equa~—
tion (74) can be used, in turn, to eliminate two of the three
differentials du, dv, and dw 1in the right of equation
(72), The result is

vA du’

(=), = = - (752)
2u + RY + g€ W o
vA dv
- (ay), = = = = (751)
L4 hu + bv + fw
wA dw
gu + fv + cw

At the limiting surface, A = 0O as defined by equation (71)}
therefore the streamlines have a singularity there, Similar
to the axially symmetric flow, the streamlines generally are
turned back and form a cusp at this surface, The accelera~—
tion and the pressurs gradient are, of course, infinitely
large ot such places,

The characteristic surface g(x,y,z) = 0 1in physical
space 1s determined by the equation

2 2 & 2
. [gx - ]= | o

u25x2+‘vagya+fwzgzz+ nggygz+-2wugzgx+ 2uvgxgy (76)
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Since this equation is 2 secondwdegree equation, there are
two familles of surfaces passing t hrough each point, These
surfaces are the wave fronts of infinitesimal disturdbances
in the flow and can bse called the Mach surfaces, The char-
scteristic surface #£{u, v, w) = O in the hodograph space
is determined by the squation

a”® [(B-I-G)fua +(Cra)r "+ (a+B)e “—2¢ £ f 26 £ £ - 2E fu'fv]
-] 2 =] e 2 2
= u [c £, +3B fw-—zﬂ‘fvfw]+v [c £, +4 £, — 20 fwfu:l

2 2 2 - .
+ W [B fy +A& £, = 2H fufv] + 3vwW [H Tafa+ @ 2.0, .

2 . 2
S fw] + 2wu [E £E +FLL = 0f -3 fwfu]

2
+ 2uv [G— tE, P E —~HE 2 0Cf fv] (77?)

By transforming equation (76) for Mach surfaces to hodograph
space, it can be shown that the transformed equation is
satisfied esither by ths characteristics in hodograph space
determined by equation (%7) or by the limiting hodograph
determined by equation (71), Therefore, here agaln the
limiting surface is the envelope of a family of Mach surfaces,

By using equations (74) and (77), it is possible to show
that the streamlines in the hodograph space are tangent to
the characteristic surfaces a2t the limiting hodograph, Fur~
thermore, by using equations (69), (71), and (74), the inw
clination of the streamlines at the limlting hodograph can
be calculated, In fact, if (ds)® = (qu)®+ (av)®+ (dw)=,

9® = w® + v® + w®, the following relation is obtained.
ds q q
d
LV a

This relation is really equivalent to equation (32), 1In
other words, at the 1imliting hodograph, the inclination of
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the gstreamlines and characterlistics to the g = constant
gsurface is equal to the Mach angle (fig, 6), It thus seems
the brenkdown of general steady isentroplce irrotational flow
of nonviscous fluid is connected with the appearance of the
envelope of Mach waves in physical space and the tangeney of
streamlincsg and characteristics 1n hodograph space,

Californla Institute of Technology,
Pasadena, Callf,, August 24, 1943,
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